QCD effective kinetic theory

image
Stages of bottom up thermalisation scenario

At weak coupling and high temperatures, a successful first principle dynamical description of the QGP medium is given by QCD effective kinetic theory (EKT). The leading order elastic scatterings and medium induced colinear radiation contain the essential microscopic physics necessary to describe the equilibration of non-abelian plasma—the so called “bottom up” thermalization scenario (see figure above). Therefore EKT links the early time particle production by strong color fields in the colliding nuclei to the late time hydrodynamic evolution of QGP fluid (Berges et al., 2021). Detailed numerical simulations of EKT provided quantitative understanding of the hydrodynamization, pre-scaling and chemical equilibration phenomena in heavy ion collisions (Keegan et al., 2016; Kurkela et al., 2019; Kurkela et al., 2019; Kurkela & Mazeliauskas, 2019; Kurkela & Mazeliauskas, 2019; Mazeliauskas & Berges, 2019; Giacalone et al., 2019; Mazeliauskas & Berges, 2019; Heller et al., 2024). While so far EKT studies have been limited to large systems, it is perfectly suited to study the system size dependence of collective effects. Therefore, my group is extending EKT computations to study the jet quenching and collective flow phenomena at different system sizes (Kurkela et al., 2021; Zhou et al., 2024). Our goal is to predict the rich set of kinematic, chemical, and electromagnetic signals of collective phenomena observed at the LHC.

References

2024

  1. Prescaling Relaxation to Nonthermal Attractors
    Michal P. Heller, Aleksas Mazeliauskas, and Thimo Preis
    Phys. Rev. Lett., 2024
  2. Minijet quenching in non-equilibrium quark-gluon plasma
    Fabian Zhou, Jasmine Brewer, and Aleksas Mazeliauskas
    JHEP, 2024

2021

  1. Rev. Mod. Phys.
    QCD thermalization: Ab initio approaches and interdisciplinary connections
    Jürgen Berges, Michal P. Heller, Aleksas Mazeliauskas, and 1 more author
    Rev. Mod. Phys., 2021
  2. Collective flow in single-hit QCD kinetic theory
    Aleksi Kurkela, Aleksas Mazeliauskas, and Robin Törnkvist
    JHEP, 2021

2019

  1. Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions
    Aleksi Kurkela, Aleksas Mazeliauskas, Jean-François Paquet, and 2 more authors
    Phys. Rev. C, 2019
  2. Matching the Nonequilibrium Initial Stage of Heavy Ion Collisions to Hydrodynamics with QCD Kinetic Theory
    Aleksi Kurkela, Aleksas Mazeliauskas, Jean-François Paquet, and 2 more authors
    Phys. Rev. Lett., 2019
  3. Chemical equilibration in weakly coupled QCD
    Aleksi Kurkela, and Aleksas Mazeliauskas
    Phys. Rev. D, 2019
  4. Chemical Equilibration in Hadronic Collisions
    Aleksi Kurkela, and Aleksas Mazeliauskas
    Phys. Rev. Lett., 2019
  5. Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma
    Aleksas Mazeliauskas, and Jürgen Berges
    Phys. Rev. Lett., 2019
  6. Hydrodynamic attractors, initial state energy and particle production in relativistic nuclear collisions
    Giuliano Giacalone, Aleksas Mazeliauskas, and Sören Schlichting
    Phys. Rev. Lett., 2019

2016

  1. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
    Liam Keegan, Aleksi Kurkela, Aleksas Mazeliauskas, and 1 more author
    JHEP, 2016